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Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable
treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical
performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare
coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched
sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching
with £ > 2 controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching
reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any
method of adjustment could substantially reduce observed bias of this magnitude.

To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed
significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without
rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based
analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score
than did ETS’s methods.
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1. INTRODUCTION

During the 1995-1996 academic year, investigators from the
College Board surveyed a random sample of high school ju-
nior and senior SAT takers to probe how they had prepared for
the SAT, asking whether they had completed extracurricular test
preparation courses, among other questions. Some 12% of re-
spondents said that they had; the comparison of these to the
remaining 88% comprised the observational study reported by
Powers and Rock (1999).

Powers and Rock estimated coaching effects in several ways,
most of which started from regression models and one of which
involved matching. Matching was not their favorite approach:
“By its nature,” they lamented, matching “significantly reduces
sample sizes,” noting that their matched-pairs analysis matched
only a fraction of the uncoached students to coached coun-
terparts (1999, p. 99). Their disappointment seemed to extend
from pair matching to matching in general, although it is not
clear that it should have. As compared to 1:k matching or
to matching with a variable number of controls (Ming and
Rosenbaum 2000), pair matching is the least flexible and the
least able to make use of a large reservoir of potential controls.

This article revisits Powers and Rock’s matching problem
using the most flexible approach applicable to it, namely op-
timal full matching (Rosenbaum 1991). Section 2 explains full
matching and contrasts it with pair matching and similar de-
signs. Full matching remedies the sample reduction problem,
using all of the available sample, as none of Powers and Rock’s
preferred adjustments was able to do; simultaneously, it pro-
duces closer matches than do their methods. It turns out that
full matching is in a sense too flexible (Sec. 2.4); Section 3 ad-
dresses this by modifying the technique to incorporate certain
restrictions. Full matching, either with or without restrictions,
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does a better job with missing data, facilitates fully adjusted
but simple comparisons of treated and control groups, and lays
bare heterogeneities of treatment effect that regression analyses
obscured.

The context of Powers and Rock’s study was as follows.
The Princeton Review has long claimed its students’ average
benefit to be 140 points in combined SAT score (Princeton
Review 2004), and during the 1990s Kaplan Educational Cen-
ters claimed average benefits of 120 points (Zehr 2001). The
coaching companies’ figures appear to be based on studies con-
ducted for them by outside firms (Princeton Review 2004); but
because neither the studies nor methodological descriptions of
them are published or publicly available, the integrity of their
conclusions is difficult to assess. In contrast, Powers and Rock
found much weaker coaching effects: about 20 points on the
math section and 10 on the verbal. Their analyses assumed,
among other things, constancy of coaching effects. Granting
this and other premises, Powers and Rock’s findings sharply
refute those of the coaching companies. Section 4 will offer
strong evidence against uniformity of coaching effects, how-
ever. Our full matching-based estimation of coaching effects,
also presented in Section 4, relaxes this and others of Powers
and Rock’s assumptions, yielding new evidence on the College
Board’s and the coaching companies’ competing claims. Sec-
tion 5 abstracts from the coaching study to discuss matching
for observational studies in general.

1.1 Test Scores and Test Preparation in
a National Sample

The data to be analyzed derive from a stratified random sam-
ple of registrants for 1995-1996 administrations of the SAT-I
test, details of which are given by Powers and Rock (1999).
About 6,700 high school juniors and seniors received surveys
asking whether and how they had prepared for the test; the
replies of some 4,200 respondents were linked to the College
Board’s records of their scores on the 1995 or 1996 exams, as
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Table 1. Selected Pretreatment Variables

Range of Standardized Percentage

Variable values bias of sample
Math section 20-43 -1 18
of PSAT 45-51 A 17
52-57 -1 16
58-80 A 15
Not taken A 34
Mean SAT at 787-987 -3 16
respondent’s 988-1,060 -2 16
first-choice 1,061-1,123 A 16
college 1,124-1,336 .3 16
No response .0 36
Fathers High school -4 40
education AA.or BA. -1 26
Graduate 4 25
No response 2 9
Average “Excellent” A 35
math grade “Good"“fail” -1 59
No response A 6
Foreign 0-2 -3 64
language 3-4 3 27
years taken No response 1 9

well as scores on previous SAT-I or PSAT tests and their an-
swers to the Student Descriptive Questionnaire (SDQ), which
all SAT-I registrants are asked to complete. By their responses
to questions about extracurricular SAT preparation, respondents
split into a treated and a control group, and the data describe the
results of a classical quasiexperiment (Campbell and Stanley
1966).

Nineteen in twenty of the survey respondents actually took
the spring 1996 or fall 1995 exam for which they had registered.
The analysis given below restricts itself to these 3,994 stu-
dents, using the corresponding SAT scores as outcome mea-
sures. Thus the record gives coaching status and SAT outcomes
for all students in the sample to be analyzed; among the ad-
ditional measures, each available for some fraction of the stu-
dents, are pretest scores, racial and socioeconomic indicators,
various data about their academic preparation, and responses
to a survey item that, by eliciting students’ first choices in col-
leges, recovered an unusually discriminating measure of stu-
dents’ educational aspirations. In all, there are 27 pretreatment
variables.

The coached and uncoached groups differ appreciably in
these recorded measures—as do high and low scorers on the
SAT. Table 1 offers some illustration of this, giving over-
all incidences of various covariate attributes and comparing
their relative incidences in the coached and uncoached groups.
(The statistic here used to effect these comparisons is the stan-
dardized bias, given for a variable v by (v, — v¢)/sp, where
vy and v, are the average values of v in the treatment and control
groups, respectively, and slz, is the pooled within-group variance
in v.) Yet the table shows only five covariates; the analysis must
address biases on all 27 of them.

1.2 Missing and Misleading Data in Regression
and in Subclassification

In regression-based adjustment, the simplest way to handle
missing data on a covariate is to reject cases without complete
information. In adjustment based on matching or stratification,
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the method of first resort is to merge “missing” with an appro-
priate level of the covariate, or to treat it as a category unto
itself. Thus missingness becomes part of the profiles according
to which study subjects are sorted into strata or matched sets.
Good stratifications, then, will tend to group subjects that are
comparable in terms both of observed covariate values and of
covariate missingness.

Powers and Rock’s (1999) study follows the norms of re-
gression analysis rather than of stratification, rejecting all cases
with missing covariate values. Of the seven statistical analyses
they report having done, one used about an eighth of the avail-
able sample, three more used about half, another two used three
quarters, and only one, the so-called “Belson model,” used more
than 90% of it. The Belson model was an outlier in another re-
spect: Its estimate of the effect of coaching on math scores was
closer to 30 points than the 15 or 20 found in the other analy-
ses. And the difference of the treated and control groups’ mean
SAT scores is greater for the whole of the sample (41 + 5 for
SAT-M, 9 & 5 for SAT-V; n = 3,994) than for the half of the
sample used by three of Powers and Rock’s analyses (35 £ 7
for SAT-M, 6 £ 7 for SAT-V; n = 1,876). The partly missing
observations are decidedly unlike a randomly selected subset of
the sample; to the contrary, their removal from an the analysis
is likely to bias the result.

To illustrate how a stratification-based analysis might begin
to address this problem, consider simple stratifications along
the one or two covariates that most threaten to confound the
comparison of treated subjects to controls. With the College
Board coaching data, race and socioeconomic status (SES)
variables best fit this description. The one race variable sorts
subjects into eight ethnic categories, with only 6% of obser-
vations missing. Several of these groups are quite small, and
collapsing seems in order. Given the education setting of the
study, it is natural (1) to sort observations into an Asian—
American category (9%), an underrepresented minority cate-
gory (8% Black, 3% Mexican American, 1% Native American,
1% Puerto Rican, 3% other Hispanic, 3% other), and White
(66%); and (2) to place the small fraction of item nonrespon-
dents with the largest category, namely White. To account for
SES, SDQ responses give three potential stratifiers to choose
from among, namely parents’ income and education levels of
mothers and fathers. All three variables are probably measured
with some error, but it seems that high school students are more
likely to know and less likely to misreport their parents’ ed-
ucation than their parents’ income; and splitting the data into
thirds at the 33%, 67%, and 100% quantiles of mother’s and
of father’s education levels, father’s education better separates
both PSAT-math and PSAT-verbal scores. We stratify the Col-
lege Board coaching data by race and father’s education level,
grouping students into three categories of father’s education,
plus an additional category for students not reporting it. Call
this the Race-by-SES (Race x SES) subclassification; Table 2
shows sizes and compositions of its subclasses.

The Race x SES subclassification adjusts for too few of
the available covariates to be taken seriously as an adjustment
unto itself, but it should be noted that it makes a promising
beginning. For instance, the association between PSAT math
scores (grouped as in Table 1) and coaching status is signif-
icant at the .05 level in the unstratified sample, but not in
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Table 2. Race x SES Subclasses: Sizes and
Control-to-Treated-Subject Ratios

Father’s education Percentage Number of controls
(by race category) of sample per treated subject
White, or no race reported
High school or less 26 21
AA. or BA. 20 10
Postcollege 20 4.5
Not reported 7 4.5
White (all) 72 8.2
Underrepresented minority
High school or less 11 11
AA. or BA. 3 6.6
Postcollege 3 3.6
Not reported 1 4.4
Underrepresented 19 7.2
minority (all)
Asian American
High school or less 4 3.8
A.A. or BA. 3 3.4
Postcollege 3 1.5
Not reported 4 15
Asian American (all) 9 2.9
All 100 7.0

the stratified sample, when evaluated with the Mantel (1963)
score statistic; and after but not before subclassification along
race and SES, a Cochran—Mantel-Haenszel test (Agresti 1990,
sec. 7.4.6) fails to find significant differences between coached
and uncoached students in terms of number of semesters taken
of high school English and natural science, English and natural
science grades, and grades in social science and math courses.
Because other variables, such as overall high school grade point
average (GPA) and reported parents’ income, do not become
balanced after stratification on SES and race, the analyst must
make one or more additional adjustments taking the remaining
covariates explicitly into account. To effect such an adjustment,
Sections 3 and 4 of this article refine rather than replace the
Race x SES subclassification, thus inheriting its gains.

Subclassifying in this way, we have rejected no observations.
Placing subjects with partially missing data into subclasses ded-
icated to their missingness pattern, as we have done, can solve
the missingness problem only if the unavailable covariate data
are missing at random given those data that are not missing; but
for the analogous strategy in regression contexts, namely case-
wise deletion, it is necessary that the observations with partial
missingness be like a simple random subsample of the sample
as a whole—which in the present case appears not to be true.

The strategy of creating missingness levels of covariates can
also be used to construct propensity scores. It leads to propen-
sity scores which, when matched or stratified upon, balance
both covariate-missingness and observed-covariate profiles be-
tween treated and control groups (Rosenbaum and Rubin 1984,
app.); it is well-suited to missingness patterns in which obser-
vations tend to lack only few of a large number of covariates.
Such is the case here: On the 23 covariates other than pretest
scores, only one third of the College Board sample have com-
plete data, but two thirds are missing no more than two covari-
ates, and nine tenths lack data on no more than six covariates.
Our propensity score accommodates missing data in this way,
in so doing retaining all 3,994 observations.
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Adjustment by stratification encourages the analyst to focus
on the data rather than a model for it, and this can be indirectly
beneficial. With these data, for example, there is a temptation to
regard as a pretreatment variable any PSAT or SAT score from a
test sitting earlier than that of the posttest, in order to maximize
sample size in a regression using pretest scores as covariates; re-
cent regression-based studies of coaching for the SAT share in
such a simplifying assumption (Briggs 2001; Powers and Rock
1999). But as it turns out, in the College Board’s sample there
are quite a few coached students who got their coaching even
before taking their earliest SAT or PSAT: of 332 coached stu-
dents reporting the years and months in which their test prepa-
ration courses began, one fourth started their courses before
taking either the SAT or the PSAT. Treating as pretests prior test
scores that did not genuinely precede the treatment, as Briggs’
and Powers and Rock’s studies do, may deny credit to coach-
ing programs for gains that they produced. (For a more general
discussion of this point, see Rosenbaum 1984.) The analysis
to follow treats the 126 coached students with prior tests that
did not precede their coaching, or could not be determined to
have preceded it, the same as students without pretests: In re-
fashioning the covariates for inclusion in a propensity score
model, they are placed in a “pretest-missing” category. To en-
hance comparability of the groups, a similar accommodation is
made with uncoached students: Those who have prior tests that
only preceded their posttests by a period of less than 6 months
are placed into a “pretest-missing” category, rather than a cate-
gory based on groupings of pretest scores.

2. CONVENTIONAL MATCHING AND ALTERNATIVES
2.1 Nearest Available versus Optimal Matching

Most commonly, matchings join each treated subject to one
or to a fixed number k > 2 of controls, and usually this match-
ing is done by a so-called nearest available algorithm. Sec-
tion 2.2 explores ramifications of matching treated and control
subjects in only one, preset ratio. As a prelude to that discus-
sion, this section reviews the distinction between optimal and
nearest available matching.

Table 3 presents an artificial dataset modeled on an unpub-
lished gender equity study conducted by the author. Men and
women university scientists within various departments were to
be compared in terms of their lab space assignments, but first
it was necessary to match them on factors that might confound
the comparison. The actual study matched on total grant fund-
ing and several other factors, but to simplify the illustration we
consider grant funding alone.

Nearest available, or greedy, matching algorithms move
down the list of treated subjects from top to bottom, at each

Table 3. A Gender Equity Matching Problem: Women and Men
Scientists Are to Be Matched on Grant Funding

Women Men
Subject logio(grant funding) Subject log1o(grant funding)
A 5.7 \" 5.5
B 4.0 w 5.3
C 34 X 4.9
D 3.1 Y 4.9
z 3.9
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step matching a treated subject to the nearest available control,
which is then removed from the list of controls available at the
next step. Matchings are made at a given stage without attention
to how they affect possibilities for later matchings. In the equity
matching problem posed in Table 3, a nearest available algo-
rithm for pair matching would first match A to V, then B to Z,
Cto X, and finally D to Y, for a total “cost” (sum of absolute dif-
ferences in log Grant Funding) of 3.6. Having matched A to V,
Z is the nearest available potential match for B, but matching
B to Z is in fact “greedy,” in that it forces C and/or D to be more
poorly matched at the next stage. In contrast, optimal matching
algorithms optimize global, rather than local, objectives. The
optimal solution for the problem of pairing each of Table 3’s
women with one of its men joins A to V, B to X, C to Y, and
D to Z, for a total cost of 3.4.

For pair matching with a large reservoir of controls, greedy
algorithms often do nearly as well as optimal algorithms
(Rosenbaum and Rubin 1985). But absent an excess of avail-
able controls, or with unfortunate orderings of the list of treated
subjects, greedy algorithms can do much worse than optimal
ones.

2.2 The Weakness of Fixed-Ratio Matching: Using
More Controls Leads to Larger Biases

Returning to the coaching study, let us match coached and
uncoached students first as pairs, and then in fixed proportions
1 : k, letting k£ grow until all controls have been matched, and let
us compare these alternative matchings to one another. Because
optimal matches are never worse, and often better, than greedy
matches, we generate each match using optimal methods.

Surely the best 1: 1 match is less likely than any 1 : k match,
k > 2, to join a treated subject to a control that differs apprecia-
bly from it; and surely it follows that among all 1 : k matches,
k> 1, an optimal 1 : 1 match most reduces the bias of treatment
to control group comparisons. Yet it would be rash to prefer
1: 1 matches categorically, because when more than one good
potential match is available for each treated subject, there will
be k > 2 such that some 1:k match leads to sharper estimates
than do 1: 1 matches, with little penalty in terms of bias. In the
context of our coaching study, how much precision does each
increment to the number of controls buy, and at what cost in
terms of bias?

To appreciate the impact of the number of controls on the ef-
fect estimate’s variability, consider that estimate in the context
of a simple linear model. Attach numbers 1,...,n to sample
units; let T and C be the indices of the treated and the control
group, respectively, sothat TUC ={1,...,n}and TN C =,
and let S indicate a partition of the sample into matched and
unmatched sets by mapping indices {1, ..., n} of sample units
to 0, for unmatched units, or to positive integers {1, ..., S} in-
dicating matched sets. (The sth matched set, 1 < s < S, is then
represented as S~![s].) Then the model represents responses of
matched units [/ for which S(i) > 0] as follows:

v T8() + As) + i,
i =
Asy + i,

ieT
ieC,
E(g) =0, Cov(e) =01, 0% <00, (1)
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where Ajq, ..., Ag are matched-set effects and 71, ..
treatment—control contrasts, one for each matched set.

Under model (1), in the sth matched set the average differ-
ence of treatment- and control-subgroup responses, Ys — Vsc,
unbiasedly estimates 7;, and weighted averages Y  wyTs (W > 0,
> wy = 1) may be estimated with weighted averages of these
matched-set response differences, Y w;Z;. Given candidate
stratifications S:{0,...,n} — {0,...,S} and S:{O,...,n} —
{0, ..., S } with weightings w and w, therefore, the quotient

., Tg are

S

12
- , #(S™1[s])

S #8'5) .
2 _ _ 2
x (;Wf #(Tmsl[s]).#(cmsl[:v])> @)

[#(A) = size or cardinality of A] assesses the relative precision
of estimates based on S and on S. When S and S give rise to
models of form (1) sharing a common value of o, R(S, S) is
the ratio of SD’s of estimates of w- and w-weighted averages of
stratum treatment/control contrasts.

Comparisons based on this quotient favor 1:k matchings
with larger values of k. Weighting strata in proportion to the
number of treated subjects they contain is sometimes called
effect of treatment on the treated (ETT) weighting; using
ETT weights, wy = #({i € T:S(@) =s})/#({i € T:S(@) > 0}),
and comparing each matching to a 1:1 matching, the relative
precision quotients for 1:1, 1:3, 1:5, and 1:7 matchings are
1.00, .82, .77, and .76. Matchings with multiple controls appear
appreciably more precise.

The relative precision number R(S, S) does not depend on
which subjects S, or S. groups together; for example, any two
1:5 matches Ss and S5 have R(S,S') = 1. In contrast, biases
attending to a stratification S are determined by S’s success at
grouping like with like. Figure 1 shows standardized biases for
the unmatched College Board coaching data and for optimal
1:1, 1:3, 1:5, and 1:7 propensity score matchings created
with it.

Observe that the boxplots at the far left and far right of the
figure are identical. This is no accident: The matched sets de-
scribed by the rightmost boxplot exclude no controls and, in the
computation of standardized biases, give all controls the same
weight; the same occurs when covariate biases are calculated
for the unmatched sample. In general, if controls are K times
as numerous as treated subjects, then adjustment using a 1: K
matching amounts to no adjustment at all.

The pattern in Figure 1 appears in a number of contexts. It
has led authors such as Dehejia and Wahba (1999) and Smith
(1997) to conclude that whatever its advantages for variance,
attempting to use most or all of the control reservoir invites
sharp penalties in terms of bias. Full matching will turn out to
involve a very different variance-bias tradeoff, however, making
attractive another explanation of the penalties for increased use
of controls seen in Figure 1: They reflect limitations inherent to
fixed-ratio matching.
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Figure 1. Covariate Imbalances in 1:k Matching. Each boxplot rep-
resents standardized biases in the 99 categories of the 27 categorical
covariates along with standardized bias in the propensity score (which
in each plot is the uppermost outlier). Strictly speaking, the matching
represented at far right is not a 1: 7 matching but a blend of six 1: 6 and
494 1: 7 matched sets.

2.3 Full Matching: An lllustration

Full matching subdivides a sample into a collection of
matched sets consisting either of a treated subject and any pos-
itive number of controls or a control subject and any positive
number of treated persons. These matchings stand in contrast
to the 1:k matchings considered in the previous section. For
example, one can readily verify that the optimum placement of
the four women and five men in Table 3 into matched sets of
one woman and one or two men matches Ato Vand W, B to X,
Cto Y, and D to Z, with total cost 3.8. The optimal full match,
depicted in Table 4, reduces this sum to 3.6. Coincidentally,
it avoids matching any woman to a man whose grant funding
differs from hers by more than a factor of 10—a requirement
that, with the help of full matching, could be insisted upon in
the actual study on which the example is based. In the example
problem, neither pair matching nor matching with one or two
controls could have met such a requirement.

Rosenbaum (1991) introduced full matching, Gu and
Rosenbaum (1993) did a simulation study of it, and Marcus
(2000) made use of it to assess the Head Start compensatory
education program.

Table 4. Full-Matching Solution to the Matching Problem

Posed by Table 3
Women Men
Matched Matched

Subject  logqp(grant) set Subject  logqp(grant) set
A 5.7 1 \' 55 1
B 4.0 2 W 5.3 1
C 3.4 2 X 4.9 1
D 3.1 2 Y 4.9 1

z 3.9 2
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2.4 Matching to Use Every Control

To judge from Figure 1, no way of matching coached to un-
coached students at once balances all measured covariates and
places each available control in some matched set. However,
each matching in Figure 1 joins treated and control subjects in
only a single, fixed ratio; full matching may introduce new pos-
sibilities. This section studies the optimal, in the sense of mini-
mizing propensity score distances, full matching of the College
Board sample. By its construction, such a matching cannot fail
to use every available control, but its success or failure at im-
posing balance upon measured covariates remains to be seen.

For each pair i € T and j € C, let a discrepancy §;; € [0, oo]
be given: Small values of § indicate desirable matches; large
finite §’s, matches to be avoided; infinite §’s, matches that are
forbidden. A full matching is a partition of all or part of the sam-
ple into one—one, one—many, and many—one matched sets, none
of which includes forbidden pairings. Formally, by “full match-
ing” let us understand a mapping S of T U C into {0, ..., S},
S a positive integer, such that each matched set M = S~![s]
(1 <5 <9) satisfies min(#M NT), # M N C)) = 1, and for all
ieMNTandjeMNC, 3 < oo. The size of a full matching
S is the ordered pair (#(S’l[{l,...,S}]OT),#(S)_I[{I, e
S} N C), indicating the number of treated and the number of
control units that S places into matched sets. These definitions
are substantially equivalent to those of Rosenbaum (1991).

Given a full-matching problem (C, T, {5;}), a full match S of
size (c, t) that solves it is optimal among size (¢, t) full matches
if it minimizes net discrepancy,

2. X & 3

ieT,S(i)>0 jeC,S(i)=S(j)

among all size (c, t) full matches S for (C, T, {6;;}). An opti-
mal full match is a minimizer of net discrepancy among size
#(C), #(T)) full matches, that is, full matches that discard no
units.
In the present analysis, discrepancies §;; are based on the
propensity score: Fori e T, j € C,
0, i, j belong to different Race x SES subclasses
[logit(e(X;)) — logit(e(X;))
otherwise,

8ij=

’

where X is the vector of covariates and &(X;), e(X)) are fitted
propensity scores. The infinite distances force exact matching
on race and father’s education. An algorithm to find optimal
full matches is described in the Appendix.

Full matching was very successful in removing bias due to
observed covariates. The average within-stratum discrepancy
between treateds and controls, understood as distance along the
fitted score, is .05, and the optimal full match removes 99% of
the bias in the fitted score. By contrast, average propensity dis-
tances in the optimal 1:1, 1:3, and 1:5 fixed-ratio matchings
were .04, .31, and .69, respectively, with propensity score bias
reductions of 97%, 74%, and 42%. When the sample is parti-
tioned according to the optimal full match, no covariate exhibits
even a hint of association with treatment status; the Cochran—
Mantel-Haenszel 2 statistics (see Sec. 1.2) are both nonsignif-
icant and uniformly close to 0. Evidently, full matching permits
use of the control reservoir in its entirety, with no discernible
penalty in terms of bias.
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Figure 2. Superimposed Barplots Representing Stratum Sizes of the
Optimal Full Match (gray bars, in background; 468 strata) and the Opti-
mal [.5, 2] Full Match (in foreground; 491 strata). The contrast between
the two illustrates that in full matching restrictions on treated-to-control
ratios greatly reduce the number of matched sets that are unusually
heavy with control or treated subjects. Vertically aligned bars represent
a single matched set, with bar heights above the x axis giving the num-
ber of controls in it and bar depth below the x axis showing its share of
treated subjects.

Variance is another issue. Relative to the optimal 1:1
match (S1), the relative precision of the optimal full match
is a disappointing .93. This may be better than the optimal
pair match, but it is worse than every one—many match con-
sidered in Section 2.2. For instance, the optimal 1:3 matching
Sz—which substantially reduced covariate imbalances—had
R(S1,S3) = .82. A use of full matching that contains variance
as well as bias is described in the next section.

The optimal full match looks strikingly different from any
fixed-ratio matching. Most notably, it contains some out-
landishly large matched sets: as many as six treated subjects
to a control; as many as 161 controls to a treated. Figure 2
represents the composition of its matched sets with stacked
barplots. The black bars in the foreground of Figure 2 repre-
sent a matching that will be introduced in Section 3.2, but the
gray bars in the background describe the optimal full matching.
Adjoining upper and lower bars give the numbers of uncoached
and of coached students in a single matched set, with matched
sets arranged from left to right in order of increasing propen-
sity score. This arrangement illustrates the natural tendency for
subjects with high scores to be placed in many—one matched
sets, while low propensity score subjects wind up in one-many
substrata that are heavy with controls.

3. FULL MATCHING WITH RESTRICTIONS

The optimal full match uses all controls and balances every
covariate, but some of its matched sets are too heavy with con-
trols, and in others controls are quite sparse. The disparities
stand behind the optimal full match’s disappointing relative pre-
cision. And by altering so drastically the weighting of subjects
implicit in the Race x SES subclassification, it engenders esti-
mates of coaching effects that depend quite strongly on a partic-
ular propensity score specification. This section produces a full
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matching that is similar to the matching of Section 2.4 in that it
balances available covariates without rejecting any controls. In
terms of maintaining balance in the relative numbers of treated
and control subjects in any matched set, on the other hand, it
does a good deal better than that matching; this improvement
increases precision, in the sense that it reduces standard errors
of estimates of treatment effects. Some technical preliminaries
are necessary, and it is best to begin with an illustration.

3.1 Full Matching With Restricted
Treated-to-Control Ratios

Let us return for the moment to the matching problem of Ta-
ble 3. As compared to the optimal pair matching, or to the opti-
mal matching with one or two controls, the optimal full match
given in Table 4 supports assessments of gender equity that have
smaller bias, because it matches men and women more closely
in terms of the one covariate being adjusted for. In terms of
variance, however, it is actually worse than those matchings.
Comparing to pair matching and using ETT weights for each
comparison, the precision of a matching into three pairs and a
1:2 setis .97, while a 1:4, 3:1 full matching (as in Table 4)
has precision 1.27. One remedy for this is to constrain the re-
sult of one’s full matching so that the ratios of the numbers of
treated and of control subjects in each matched set are either
homogeneous, as in the optimal pair matching, or at least rel-
atively homogeneous, as they were in the one-to-two controls
solution to the matching problem of Table 3.

Suppose, for concreteness, that we seek a full matching such
that in each matched set, the number of treated subjects divided
by the number of controls ranges from about half up to about
twice what that ratio is in the sample as a whole. For the gender
equity matching problem, the overall ratio of treated (women)
to control subjects (men) is 4:5, so we would seek individual
matched sets with treated-to-control ratios of about 1:2.5 up to
1.6: 1. Matched sets with 2.5 controls or 1.6 treated subjects are
of course impossible, so we require a rounding convention. Let
us be permissive rather than strict, interpreting the present re-
quirement so as to permit matched sets with treated-to-control
ratios of 1:3 up to 2:1. (By establishing the conventions in
this way, we reduce the potential for inadvertently imposing a
restriction that makes matching infeasible, as would occur in
the equity matching problem if a restricting factor of .75, rather
than 1/2, were placed on the reduction in the ratio of treated
subjects to controls, and if the resulting upper limit of 1.67 con-
trols per treated subject were to be interpreted strictly.)

The full matching that minimizes costs while adhering, un-
der this interpretation, to the half-to-twice restriction on the ra-
tio of women to men is as follows: woman A is matched to men
V and W, and B to X and Y; while women C and D are both
matched to Z. The restrictions lead to a somewhat greater total
cost, 3.7 versus 3.6. Even with restrictions, however, full match-
ing again makes it possible to avoid matching men and women
whose log;,(Grant Funding) differs by more than 1. At a small
price, then, one secures a substantial improvement in precision:
Writing S, for the optimal full matching with constraints and
Sy for Table 4’s unconstrained optimal full matching, one has
R(S,, Sy) = .82.

Let us place these ideas into a suitable formalism. A match-
ing S subdivides U if for all subject indices i and j, S(i) =
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S(j) entails U(i) = U(j). When S subdivides U, for each
matched set M of S there is a stratum U of U, that is, U =
U~ ![s] for some s > 1, such that M C U. Given a stratifi-
cation U, call the ratio of treated subjects to controls in U
the U-treatment odds for stratum U. When S subdivides U,
a matched set M of S has both S-treatment odds, d5(M),
and U-treatment odds, dU(M), namely the U-treatment odds
for the stratum U of U that contains it. In the gender eq-
uity example, the null stratification Up:{A, B, C,D,V, W, X,
Y,Z} — {1} is subdivided by S,. Regarding women as treated
and men as control subjects, the Up-treatment odds for Up’s
lone stratum, dUU({A, B,C,D,V,W, X, Y,Z}),are 4:5, as are
the Up-treatment odds in each of S,’s matched sets; but S;’s
three matched sets have S,-treatment odds of &% ({A, V, W}) =
1:2,d5({B, X, YH)=1:2,and d5 ({C,D, Z}) =2: 1.

A matching S that subdivides U respects a thickening cap
of u, u > 1, if the S- and U-treatment odds obey the relation

[udV(M)]: 1, ud9(M) > 1
1| (ud® o)~

for each matched set M of S. Such an S nowhere increases the
ratio of treated to control subjects to more than roughly u- 100%
of what it would have been under U. As a subdivision of the
null stratification Uy, the restricted full matching S, respects a
thickening cap of 2.

Similarly, the subdivision of U into S conforms to a thinning
cap of [ if 0 <[ <1 and for each matched set M of S,

|1dv |1, 1dV (M) > 1

1:[(1ab )™,

As a subdivision of Up, S, holds to a thinning cap of 1/2.

An [/, u]-subdivision of U is a subdivision of U respecting a
thinning cap of / and a thickening cap of u. An optimal [I, u]-
subdivision of U is an [, u]-subdivision of U with minimal net
discrepancy [cf. (3)] among full matches that subdivide U and
conform to thinning and thickening caps of / and u. S, is an
optimal [.5, 2]-subdivision of Uy.

S < : 4)

ud9M) < 1

dS(M) > { 5)

1dYMm) < 1.

3.2 Restricted Full Matching for the
Board Sample

Now let U denote the Race x SES subclassification (Sec. 1.2).
We seek an optimal [/, u]-subdivision of U, / < 1 and u > 1,
that adequately balances each covariate while keeping / and u
as close to one as is consistent with this aim.

One-half and two are a natural pair of caps with which to
start: Alter the treatment odds within strata, they say, by no
more than a factor of 2. Against the optimal [.5, 2] full match,
testing each of the 27 covariates separately using statistics of
the Mantel-Haenszel (MH) type (cf. Sec. 1.2) yields no results
of significance at the nominal .05 level; only with the parents’
income variable is there a hint of association (M?/df = 8.9/4,
p = .06). Alternatively, the battery of tests may be directed
at subjects without missing covariate data. The 27 additional
MH tests that exclude those matched sets containing a subject
missing data on the relevant covariate also fail, for the most
part, to reject null hypotheses of no association. The excep-
tions are a test giving some thin evidence of association be-
tween the parents’ income variable and treatment status, with
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Figure 3. Standardized Biases Without Stratification or Matching,
Open Circles, and Under the Optimal [.5, 2] Full Match, Shaded Circles.

M?/df =7.0/3 and p = .07, and a significant test of associ-
ation between treatment status and years of foreign language,
with M?/df = 4.8/1 and p = .03. In short, of 27 covariates,
one associates with treatment status at the .1 level, but not at
the .05 level, and another may appear associated with treatment
status at the .05, but not at the .01, level, depending on how
one handles missing values. One might expect similar results
under random assignment. Figure 3 depicts the optimal [.5, 2]
full match’s treatment—control group balance in each category
of each of the 27 covariates, also showing imbalances prior to
matching or stratification, for comparison.

In this application, a search among full matches optimal rel-
ative to various thinning and thickening caps terminated with
the optimal [.5, 2] full match. The search varied the thickening
cap u first, before imposing a thinning cap, because under ETT
weightings of stratum effects, u#’s impact on precision is greater
than that of the thinning cap [: It is readily confirmed using
(2) that replacing a 1 : 1 and a 1:5 stratum with two 1:3 strata
yields much more precision than does replacing a 1:10 and a
1:50 stratum with two 1: 30 strata. When U is optimally subdi-
vided with thickening caps decreasing from oo to 10(=10/1),
to 5(=10/2), to 10/3, to 10/4 and then to 10/5 or 2, ETT-
weighted precision increases while none of the 54 MH statistics
for the resulting full matches become significant at the .1 level.
The optimal [0, 10/6] full matching is still more precise, but
because it has MH statistics that are significant at the .1 and .05
levels, we fix the thickening cap at 2.

This leads us to compare optimal [.2,2], [.3,2], ..., and
[.7,2] full matchings. The first three of these have no MH sta-
tistics that are significant at the .1 level, and the last two each
have at least two MH statistics significant at the .05 level. Recall
that the optimal [.5, 2] matching had one MH statistic signifi-
cant at the .05 level and two more significant at the .1 level,
an acceptably small degree of confounding of covariates with
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Figure 4. Standardized Biases and Relative Precision [R(-, uncon-
strained full match)] of Optimal Stratifications With Variously Con-
strained Match Ratios.

treatment status. These comparisons lead us to prefer a thinning
cap of .5. (Had we selected first a thinning and then a thicken-
ing cap rather than the reverse, this procedure would have led
us instead to the optimal [.6, 2.5] full match.) Figure 4 displays
standardized biases and relative precisions R(-, U), where U is
the optimal 1:1 match, for optimal [/, u] full matchings with
various [/ and u.

3.3 Reduced Sensitivity to Model Specification

The model here used to estimate propensity scores lacks in-
teraction terms among its independent variables and involves
no auxiliary modeling of data missingness. This puts it among
the simplest of models one might use for propensity score es-
timation; it was chosen for this reason. Certainly, more elab-
orate propensity score models have been used; Rosenbaum
and Rubin (1984), for example, employed a stepwise variable
selection procedure to select main effects and then interaction
terms, and D’ Agostino and Rubin (2000) modeled item miss-
ingness explicitly, fitting their model using the EM algorithm.

The matching strategy taken here, stratifying on variables
strongly predictive of treatment status before full matching with
restrictions, aimed to limit the dependence of the analysis on
any one specification of the treatment assignment model. To as-
sess its success at this, a more saturated propensity score model
was fit. As right-hand-side variables, this model has eight in-
teractions and 17 main effects of the original variables, cho-
sen by backward—forward stepwise variable selection. Using
this model’s fitted propensity score, evaluations of thickening
and then thinning caps lead one to prefer an optimal [.4, 2] full
match. Call this new matching Sy, and the matching selected in
Section 3.2, S;.

Both full matches use all of 3,494 controls, and in most cases
the two matchings place these control subjects into matched sets
of very similar sizes: 20% of the 3,494 go into matched sets of
precisely the same size; for 72% of controls j, the S;-treatment
odds of j’s S stratum are no more than 4/3, and no less
than 3/4, of the Si-treatment odds of j’s Sy stratum. Because
a subject’s contribution to our effect estimates is determined by
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the configuration of the matched set into which it is placed, it
should be no surprise that the two full matchings lead to similar
estimates of the coaching effect.

4. ESTIMATING TREATMENT EFFECTS

To estimate treatment effects, a model such as (1) must be
supplemented with a causal formalism and appropriate causal
assumptions. For this analysis, the most natural setup is that of
Rubin (1977), who posits random variables Y; and Y, both for
outcomes under the control condition and for outcomes under
the treatment condition. Adding the assumption that these vari-
ables are conditionally independent of the treatment assignment
variable (Z) given the covariates (X) makes inference about
treatment effects possible.

Using ETT weighting to combine by-stratum treatment
control differences, the [.5, 2] matching leads to aggregate con-
trasts of 26 points on the math section and 1 point on the verbal.
Under causal assumptions as presently discussed, these esti-
mate effects of coaching on the coached. Using model (1), the
accompanying standard errors are 5 and 5 points. By contrast,
the unadjusted differences of treated and control group means
were 41(£5) and 9(£5) points.

As one might expect, those matchings that fail to reduce
discernible biases to an indiscernible level give higher effect
estimates. For example, the nearly fixed-ratio matching that re-
spects Section 1.2’s subclassification while using all controls,
that is, the optimal [1, 1] subdivision of the Race x SES sub-
classification, offers estimates of 30(%5) and 2(45). Of all
matchings that respect the Race x SES subclassification, this
had the most favorable relative precision quotients; yet its es-
timated standard errors are only negligibly smaller than those
of the [.5, 2] match, while its poorer balance translates to ap-
parent biases of one or more standard errors in estimates of the
coaching effect. Conversely, those matchings that did reduce
observed biases to indiscernibility gave lower estimates. The
optimal [.6,2.5] full match of Section 3.2 gives estimates of
23(%5) and 0(£5), and Section 3.3’s [.4, 2] full match leads to
estimates of 23(%5) and 0(%5).

4.1 Heterogeneity of Coaching Effects

Unlike both pair matching and analysis of covariance, full
matching’s estimates and standard errors do not assume treat-
ment effects to be the same across units; they average estimates
of individual treatment effects that can, in principle, be quite
different. This is especially advantageous in a coaching study
based on a representative national sample, since coaching pro-
grams differ widely in duration, rigor, and approach. As a re-
laxation of the constant-effect model, consider the hypotheses
of 12 math and 12 verbal effects, one for each Race x SES sub-
class. By dint of the exact matching on race and father’s edu-
cation level, the matched-set coaching effects are nested within
subclass coaching effects, and the three models—the constant-
effect model, the 12-effects model, and model (1), with its
494 separate treatment effects—can be compared by an analy-
sis of variance (ANOVA). In either the math or the verbal case,
F tests based on the ANOVA reject the constant-effect model
in favor of either the 12-effects model or model (1), and the
12-effects model cannot be rejected from within (1). The hy-
pothesis that there is a single, constant treatment effect is un-
tenable. Granted, given the variety among interventions here
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grouped together as “treatments,” there is little to recommend
such hypothesis; yet previous coaching studies have often been
analyzed using regression models that are built upon it.

4.2 Very Large and Very Small Coaching Effects:
Which Are More Plausible?

Is it strange that structured, extended training for the SAT
should produce, on the average, no more than a negligible ben-
efit in verbal scores? In interpreting this result, one should bear
in mind that the control condition is not the absence of prepa-
ration for the SAT. In this observational study, “not coached”
means only “did not participate in a program of preparation for
the SAT-I that was held outside of school.” Controls may have,
and by and large did, practice and otherwise prepare for the tests
on their own or in school (Powers and Rock 1999); it is possible
that these preparations were sometimes more effective than for-
mal coaching. Indeed, our matching also facilitates estimating
what effect the treatment would have had on the controls, were
they treated, and the results of this calculation suggest that some
controls benefited by selecting alternative test preparations: The
effect of treatment for the controls is estimated at 3 &+ 7 points
on the math section and —8 = 7 points on the verbal. Evidently,
whether and to what degree coaching is beneficial varies greatly
from student to student.

Our analysis’s allowance for heterogeneous coaching ef-
fects permits it to speak more directly to the coaching com-
panies’ claims than did Powers and Rock’s analyses. Recall
that the Princeton Review claims its students’ average benefit
is 140 points in the combined score (Princeton Review 2004),
and that Kaplan Educational Centers have said that students
benefit from their courses, on average, by 120 points (Zehr
2001). Further, a Kaplan spokesman has argued that very dif-
ferent gains are to be expected from Kaplan’s programs as op-
posed to those of many of its competitors; shorter, cheaper, and
untested programs abound, and smaller benefits are to be ex-
pected from them (Kolata 2001). The multiple-regression type
of analysis favored by Powers and Rock cannot speak directly
to this argument, as they assume uniform treatment effects, but
the matching-based analysis of this article can.

At least 41% of coached students in the College Board sam-
ple had been coached by either Kaplan Educational Centers or
the Princeton Review. Consider the hypothesis that Kaplan and
the Princeton Review offer varying coaching benefits that aver-
age to 120 points, say. To permit a robust test of this hypothesis,
let us supplement it with the unlikely assumption that all other
companies’ coaching benefits average to 0. Even with models
of form (1), which grant each matched set its own treatment
effect, the upper 95% confidence bounds for the math and ver-
bal effects (of coaching upon the coached) are about 37 and 11
points. Combined, these fall short of the 49-point overall av-
erage effect that Kaplan’s and the Princeton Review’s claims
would, at a minimum, entail. The hypothesis is rejected.

5. DISCUSSION: UPDATING THE
LIMITATIONS OF MATCHING

Observational studies compare persons who received a spec-
ified treatment to others who did not, adjusting for pretreatment
differences between treated and comparison groups. Broadly,
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these adjustments are effected either by regression modeling or
by stratification. Regression adjustments assume that we know
or can reliably discern patterns relating pretreatment, treatment,
and response variables, and require the statistician to spec-
ify and fit a corresponding statistical model. Adjustment by
stratification assumes only that treatment and control groups
sufficiently alike in terms of pretreatment characteristics are
comparable in terms of response to treatment; but it requires
the statistician to make precise what it means for groups to be
sufficiently alike prior to treatment, and it requires a method for
grouping subjects into sufficiently uniform blocks.

Matching and stratification are old and trusted methods of
adjustment for observational studies, but the difficulty of im-
plementing them led earlier practitioners to prefer regression.
Cochran (1972) warned that in “larger studies. .. matching be-
comes impractical.” In smaller and more manageable settings,
Cochran recommended stratification as adjustment only for the
one or two most important variables. Adjusting by matching
or stratification for more than a few variables seemed hope-
less: In one widely cited case, Chapin (1947) started with
671 treated subjects and 523 controls but found only 23 treated—
control pairs matching exactly on six categorical covariates.
Citing these concerns, Cochran concluded: “[I]f there are say
4x variables. . . [then our] recourse is to model construction and
analysis based on the model.”

Cochran gave this pessimistic assessment some 30 years ago.
Advances since then have made observational data no more
amenable to exact matching than they ever were, but the intro-
duction of propensity scores (Rosenbaum and Rubin 1984) has
greatly facilitated approximate matching on many variables; re-
sults possible with propensity scores and optimal full matching
stand in striking contrast with Cochran’s. In analytic studies,
Cochran (1965) studied stratification on a single variable for
treatment and control groups no more than a standard deviation
apart. The schemes he studied removed as little as 57% and no
more than 89% of the bias along the covariate. In the present
case study, optimal full matching removes as much as 99% of
the bias along a propensity score on which the treated and con-
trol means are separated by 1.1 SD’s. In so doing, we have seen,
it reduced to insignificance biases along 27 covariates, and it
made use of more, not less, of the data than did regression-
based analyses. With flexible matching routines increasingly
available, will regression adjustment for observational studies
soon be obsolete?

APPENDIX: OLSEN’S ALGORITHM: A UNIFIED
APPROACH TO OPTIMAL MATCHING

This appendix presents the algorithm used in this article to cre-
ate optimal matchings. We employ a variant of the approach of
Rosenbaum (1991), who presented (sec. 7) a general method for trans-
lating full-matching problems into network flow problems, which can
in turn be solved efficiently using any of several widely available al-
gorithms. According to Section 2.4, full-matching problems may be
associated with triples (T, C, {3;}). A full-matching problem is fea-
sible if it has a solution with finite total discrepancy. An optimal so-
lution is one in which the average discrepancy within matched sets,
3y Yiet jeC:()=8(=s D/ (s #(0.)) € T x C:8() =8 () =),
is as small as it would be under any other solution. Rosenbaum (1991)
represented such a problem as a graph with a node for every treated and
every control, plus a node called “Source” and another called “Drain,”
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with edges from Source to each treated node, from i to j when §;; < oo,
and from every control node j to Drain. A network flow problem is as-
sociated with this graph in such a way that optimal flows through the
network correspond to optimal full matchings.

By constrained full-matching problem, let us understand a full-
matching problem (T; C; {8;;}) accompanied by upper and lower lim-
its (L, U) on the number of controls per treated and upper and lower
limits (L, U/) on the number of treateds per control; a constrained prob-
lem (T; C; {6;;}; L, U, L, U) is feasible if there exists a solution of the
problem (T; C; {6;;}) which respects the constraints. The problem of
finding an optimal [/, u]-subdivision of a stratification U, if one ex-
ists, is easily translated to a sequence of constrained full-matching
problems—one for each stratum of U. In the applications discussed
previously, controls outnumber treated subjects in each stratum, with
the consequence that L. < 1 for each constrained full matching problem
that had to be solved.

To handle constrained full-matching problems with L = 1 or 0,
Olsen (1997, chap. 6) modified Rosenbaum’s (1991) algorithm in sev-
eral important ways. First, in addition to Source and Drain nodes and a
node for each study subject, there is an additional node, labeled “Over-
flow,” with edges connecting it to each treated and to each control
node; there is no cost for sending units of flow along these edges.
Second, a negligible amount ¢ > 0 is added to each discrepancy §j;.
In Olsen’s network flow problem, the upper and lower capacity limits
for edges of various types are as follows: for edges from treateds to
controls, [0, 1]; for an edge from Source to a treated, say i, [0, U]; for
an edge from a treated, i, to Overflow, [0, U — L]; for an edge from a
control, j, to Overflow, [0, U-— 1]; and for an edge from a control, j, to
Drain, [0, 1]. The supply (exogenous inflow) is O at each node except
Source, Drain, and Overflow, at which supplies are U - #T, —p - #C,
and p - #C — U - #T, respectively. Here, p is the proportion of avail-
able controls that are to be matched to treated subjects; thus p < 1, and
p < 1only if L = 0. The constrained full-matching problem is feasible
if and only if the Olsen network flow associated with it is feasible. In
this case, an optimal flow through the network corresponds to a full
match that is optimal among appropriately constrained full matches.

To implement Olsen’s algorithm, I created functions calling the
RELAX-IV network optimization routine of Bertsekas and Tseng
(1994) from the R environment (r-project.org); this code is bundled
together in an add-on package to R, “optmatch,” information about
which can be found on my Web site.

[Received April 2003. Revised January 2004.]
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