Efficiency in Attaining Good Resident Outcomes in the Nursing Home Industry

Carrie Davidson, M.A. Case Western Reserve University Department of Epidemiology/Biostatistics

Research Questions

- Why do nursing homes allocate inputs the way that they do?
- What is an efficient allocation of resources to attain good resident outcomes?
- Are inputs allocated to most efficiently attain outputs, i.e., good resident outcomes?

Importance of the Problem

- The nation spends 7% of all national health expenditures on nursing home care -- \$92.2 billion (2000).
- Nursing home expenditures account for 7.1% of the state's 2000 FY spending (\$28.0 billion). Up from 6.8% in 1999.
- State of Ohio spent an estimated \$4.8 billion on all types of long-term care for persons with disabilities – about 17.3% of the state's 1999 expenditures
- Roughly 50% of the LTC dollars go to institutional settings
- 1930 baby dearth to "2030 Problem"

Solutions

- Create a LTC financing system that works
 - Medicaid is single largest payer, is institutionally biased, administratively cumbersome, and relatively inflexible
- Build a viable and affordable communitybased care system
- · Invest in healthy aging

Governors: "Show me the Money!"

- NGA and Bush's "New Freedom Initiative" are exploring additional flexibility in Medicaid requirements and federal approval for state flexibility in market-based, value-purchasing driven strategies, e.g., competitive rate-setting processes and selective contracting
- In the meantime, "Doing more with less"
 - "Rightsize" the NH industry "match capacity with demand"
 - Increase efficiency
 - Make it easier for family members to be the "provider of choice."

Research Goal

 Inform policy makers about the level of resources required by efficient nursing homes to transform inputs (staffing and capital) into outputs (quality care).

NH's and Inefficient Allocation of Resources

- · Excess supply to meet demand
 - Nationally, though the number of elderly has increased, the supply of nursing home beds per 1,000 people 75 declined from 127 in 1987 to 117 in 1996 a 7.9% decrease in the supply of NH beds.
 - Overall occupancy rate declined from 92.3% in 1987 to 88.8% in 1996
- · Medicaid PPS reimbursement policy
- Management at the NH level -- high staff turnover/low retention, poor training

This study focuses on

- Medicaid reimbursement issues using one state
- Management of resources at the nursing home level to produce quality
- Opportunity for natural experiment due to Medicare shift to PPS in July 1998 for the majority of providers – should see some change in their management of resources

Measuring Efficiency

- · Rooted in industry and especially manufacturing
- Farrell (1957) first proposed estimating a fully efficient firm's production function using sample data and a non-parametric piece-wise-linear technology or a parametric function, such as the Cobb-Douglas form
- Aigner and Chu (1968) considered the estimation of a parametric frontier production function of Cobb-Douglas form using data on a sample of firms.

 $(\ln y_i = x_i\beta - u_i)$

- Where *ln*(*y*) is the logarithm of the scalar output for the *i*-th firm
- x_i is a (K+1) row vector, whose 1st element is "1" and the remaining elements are logarithms of the K-input quantities used by the *i*-th firm
- $\beta = (\beta_0, \beta_1, ..., \beta_k)$ is a (K+1) column vector of unknown parameters to be estimated; and
- *u_i* is a non-negative random variable, associated with TI in production of firms in the industry involved

• The ratio of the observed output for the *i*-th firm, relative to the potential output, defined by the frontier function, given the input vector, x_i , is used to define the technical efficiency of the *i*-th firm. $TE_i =$

$$\frac{y_i}{\exp(x_i\beta)} = \frac{\exp(x_i\beta - u_i)}{\exp(x_i\beta)} = \exp(-u_i)$$

• Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977) independently proposed the stochastic frontier production function in which an additional random error *u* was added to the non-negative random error variable *w_i*.

$$ln(y_i) = x_i\beta + w_i - u_i$$

$$\begin{aligned} \min_{\theta,\lambda}, \\ st & -y + Y\lambda \geq 0, \\ & \theta x_i - X\lambda \geq 0, \\ & \lambda \geq 0, \end{aligned}$$

Where θ is a scalar between 0 and 1 denoting TE and λ is a N*1 vector of constants. The LP problem must be solved N times, once for each firm in the sample.

Productivity and Efficiency

- Productivity = outputs/inputs
- We are interested in total factor productivity versus labor productivity or other partial measures of productivity
- Efficiency is in relationship to a frontier

• A production frontier captures the current state of technology in an industry. Firms in the industry are either operating on the frontier (and are therefore **technically efficient**), or below that frontier (and technically inefficient).

In x

In y_B In y₄ Productivity improvements can be achieved by giving them new tools to accomplish tasks in a more timely fashion or reorganizing the work flow to improve productivity. This is called **technical change** and is represented by an upward shift in the frontier.

- Productivity improvements can also be achieved by training workers to ensure that existing technology is used more efficiently. This is called **technological progress** or **efficiency improvement** and is represented by movement from below the frontier towards the frontier.
- Dual to the production frontier is the cost function. Costs are a function of input prices, output, and *allocative inefficiency*. Allocative inefficiency refers to deviations from the cost frontier tangent to the production frontier.

Estimating Frontiers

- Two methods, stochastic frontier estimation (SFE) and data envelopment analysis allow applied researchers to estimate production, cost, as well as revenue and profit frontiers.
- Using DEA, all deviations from the frontiers are assumed to be inefficiency.
- Using SFE, we decompose deviations into two components, inefficiency and statistical noise.
- Distance function ratios calculate inefficiencies in DEA – in SFE, distance function ratios are comprised of error term and inefficiency term...statistically calculate the inefficiency term after making assumption re: error distribution.

 In SFE, the technical inefficiency effects are assumed to be a function of a set of explanatory variables, the z_{it}s and an unknown vector of coefficients, δ.

 $U_i = z_i \delta + W_i$

where the random variable, W_i , is defined by the truncation of the normal distribution with mean zero and variance σ^2 , such that the point of truncation is $-z_i\delta$.

Advantages of DEA & SFE

- Both allow us to incorporate different assumptions regarding returns to scale, depending on the industry
- Both allow us to estimate the direction of the inefficiencies, e.g., inefficiencies are the result of input-, output-, or both.
 - Output-oriented inefficiency assumes that firms in this industry could be producing more output from the inputs.

Disadvantages

- · Vulnerable to validity problems
 - the closer or further our assumptions regarding inefficiencies are from the frontier, the more or less valid any results based on the assumption
- · Not theoretically driven
 - In SFE, inefficiency is assumed to be part of the deviation from the traditionally determined production function. There is no theory to support this.
- DEA results are determined by peers and inefficiency scores can change depending on who's included in the analysis

Policy Applications

- Widely applied in a variety of economic and policy applications
 - Banking, agricultural, health, energy, eduction, and regulation economics.
- Provides another metric for relative performance, esp. those at the bottom and high-performers identifies problem providers as well as best practice providers.
- Covariates in the models can highlight contributors to efficiency/inefficiency
- Will give us insights into the substitutability of various inputs and inefficiencies in allocation of inputs, esp. capital

Research Proposal

- Phase I
 - Identify determinants of variations in inputs
- Phase II
 - Using outcome indicators, identify relationship of inputs to outcomes
 - Explore application of SFE/DEA production frontier approaches to the data

Data

- Ohio Medicaid nursing facility cost reports for 1996-1999 (4 years)
 - Total hours by nursing facility for each job classification
 - Unit prices for each labor input
 - Total costs for non-labor variable costs
 - Depreciation and interest expense on capital
- NH-specific Quality Indices from MDS

Methodology

2 Major Inputs

- Labor by category (RNs, LPNs, STNAs, Administration, Indirect, Ancillary services)
- Capital by category (plant maintenance, number of beds, utility expenses, depreciation, interest)
- 1, Factor Sets, or 15 Outputs
 - 10 Clinical Outcome Indicators, 4 functional change indicators, 1 process indicator

Covariates

Market Level

- Competetiveness index
- Per-capita bed supply for persons 85+
- Median income
- Facility Level
 - Medicare
 - For-profit
 - Chain-affiliated
 - Religious

- Hospital-based (Y/N)
- Size of facility (scale)
- Education level of administrator
- Occupancy rate
- Payer mix
- · Residency characteristics
 - Average case mix

- Revenue to Expense data
 - Revenues/Expenses by cost center
 - Revenues expenses
 - Quick ratio
 - Acid-test ratio
- Reimbursement System Variables
 - Above/below ceiling
 - Amount of efficiency incentive (indirect & capital)

Feedback

Equations

 $\begin{array}{l} C_{ijt} = f(R_{it}, p_{ijt}, DC_{ijt-1)t}, CC_{int}, RE_{it}, M_{it}, F_{it}) \\ IC_{igt} = f(R_{it}, p_{ijt}, CC_{int}, RE_{it}, M_{it}, F_{it}) \\ CC_{int} = f(R_{it}, RE_{it}, M_{it}, F_{it}) \\ Qit = f(DC_{ijt}, CC_{int} | R_{it}, RE_{it}, M_{it}, F_{it}) \end{array}$

Methods

Potential of Medicare PPS Implementation and implications for design