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Introduction to the Bootstrap

Summary

• Will describe
- basic ideas
- confidence intervals
- application to hypothesis testing and                 
regression problems
- examples

Bootstrap defined

• The bootstrap is a form of a larger class of methods that 
resample from the original data set and therefore are called
resampling procedures

• Some resampling procedures go back a long way (e.g. the 
jackknife—1949, permutation methods—1930s)

• Computer based method for assigning measures of accuracy to 
statistical estimates(Efron, 1998)

• Efron along with colleagues connected the nonparametric 
bootstrap(resampling with replacement) with earlier accepted 
statistical tools such as the jackknife and delta method for 
estimating standard errors

Bootstrap process described
• B bootstrap samples are generated from the 

original dataset
• Each bootstrap sample has n elements, generated 

by sampling with replacement n times
• Bootstrap replicates s(x*1),s(x*2), ……, s(x*B) are 

obtained by calculating the value of the estimator 
of the replicate

• The standard deviation of the values s(x*1),s(x*2), 
……, s(x*B) is the estimate of standard error of 
s(x), sometimes called the Monte Carlo 
approximation to the bootstrap estimate of the 
standard error 
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Bootstrap process described(cont)
• We really would like to know the 

distribution of  – s(x)
• What we have, however, is the Monte Carlo 

approximation to the distribution of 
s(x)* –

• With a sufficiently large n the two 
distributions are expected to be nearly the 
same

• That the distribution of  s(x)* – behaves 
almost like the distribution of          - s(x)
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The empirical distribution and 
the plug-in principle
• Statistical inference involves estimating 

some aspect of a probability distribution F
• A sensible way of estimating some aspect of 

F, such as the mean, median or correlation, 
is to use the corresponding aspect of F

• This is called the plug-in principle 
• The bootstrap method is a direct application 

of the plug-in principle 

The empirical distribution 
(continued)
• Observe F → (x1, x2,…, xn,), the empirical 

distribution F is the discrete distribution that puts 
probability 1/n on each value xi, 
i =1,2, …, n.

• F assigns to a set A in the sample space of x its 
empirical probability Prob{A} = #{xi Є A}/n

• The probability is really the proportion of 
occurrence of each value in the empirical 
distribution 

• Information is not lost going from the full data set 
(sample space) to the reduced 

The Empirical distribution 
(cont)
• It is true that the vector of observed 

frequencies         =              is a sufficient 
statistic for the distribution F = (f1, f2,…)

• All the information about F contained in x is 
also contained in F

• The sufficiency theorem assumes that the 
data have been generated by random 
sampling from some distribution F

• This is not always true

F̂ )ˆˆ( ,.....2,1 ff
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The plug-in principle
• Simple method of estimating parameters from 

samples
• The plug-in estimate of a parameter     = t(F) is 

defined to be =  
• The bootstrap is used to study the bias and 

standard error of the plug-in estimate 
• The bootstrap produces biases and standard errors 

in an automatic fashion 
• The plug-in principle is less good when there is 

information about F other than that provided by 
the sample x

• The plug-in principle and the bootstrap can be 
adapted to parametric families and regression 
models 

θ̂
θ
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Statistics and standard errors

• Summary statistics are often the first outputs 
of a data analysis

• The bootstrap provides accuracy estimates 
by using the plug-in principle

• The bootstrap estimate of standard error 
requires no theoretical calculations

• It is available even if the estimator     = s(x) 
is mathematically complex 

θ

The bootstrap estimate of 
standard error

• Bootstrap methods for estimating standard 
errors depend upon the bootstrap sample

• Corresponding to a bootstrap data set x* is a 
bootstrap replication of      = s(x*)

• The bootstrap estimate the standard error of 
a statistic is a plug-in estimate that uses the 
empirical distribution function     in place of 
the unknown distribution F

θ

F̂

The bootstrap algorithm for 
estimating standard errors
1. Select B independent bootstrap samples 

x*1 x*2,…, x*B, each consisting of n data 
values drawn with replacement from x

2.   Evaluate the bootstrap replication 
corresponding to each bootstrap sample,

(b) = s(x*b)     b = 1,2, …. , B*̂θ
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The bootstrap algorithm for 
estimating SE(cont)
3. Estimate the standard error by the sample 

standard deviation of  the B replications

Where 

∑=
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The number of bootstrap 
replications B
• A small number of replications B = 25, is usually 

informative according to Efron
• 50 replications is often enough to give good 

estimate of standard error
• Much bigger values of B are required for bootstrap 

confidence intervals 
• 1000 replications is recommended by Harrell and 

others for stable confidence intervals

The parametric bootstrap
• Bootstrap resampling carried out parametrically
• Standard error from this process will closely 

resemble results derived from textbook formulae
• Why conduct bootstrap process if theory and 

formulae have been developed?
• Where is bootstrap process inferior to formula 

application
• Davison and Hinkley (1997) justify the 

nonparametric bootstrap in parametric problems as 
a test of robustness of validity of the parametric 
method

Estimation of bias

• Another measure of statistical accuracy is 
bias

• Bias is the difference between the expected 
value of an estimator  and the quantity 
being estimated 

• The bootstrap estimate of bias is:   

θofestimateinplug
theisFtwhereFtxsEbias FF
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Estimation of bias(cont)

• If s(x) is the mean it can be shown that       
• Estimates of bootstrap bias must be done with 

Monte Carlo simulation with B 
replications of the form 

0ˆ =Fbias

∑ =
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Confidence intervals 

• Standard errors are often used to assign 
approximate confidence intervals to a parameter of 
interest

• This parameter is assumed to be normally 
distributed with known standard error

• The random quantity 
valid for  
but a limited approximation for finite samples

)1,0(~ˆ/)ˆ( NesZ θθ −=
∞→n

Confidence intervals

• The standard confidence interval can be 
improved upon using the t distribution for 
finite samples

• The use of the t distribution does not adjust 
for the skewness of the underlying 
distribution or other errors that result when  
is not the sample mean

θ̂

Confidence intervals based on 
the bootstrap-t interval

• Obtain accurate intervals without having to make 
normal theory assumptions

• Estimate the distribution of  Z directly from the 
data

• Can build a table of values for this process as you 
can for the Normal and t distributions

• The bootstrap table is built by generating B 
bootstrap samples and computing the bootstrap 
version of Z for each

)()(ˆ),(ˆ/)ˆ)(ˆ()( ***** bxsbwherebesbbZ =−= θθθ
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Table of percentiles

Percentile 5% 10% 16% 50% 84% 90% 95%

t5 -2.01 -1.48 -1.73 0 1.73 1.48 2.01

t8 -1.86 -1.40 -1.10 0 1.10 1.40 1.86

t20 -1.73 -1.33 -1.06 0 1.06 1.33 1.73

t50 -1.68 -1.30 -1.02 0 1.02 1.30 1.68

t100 -1.66 -1.29 -1.00 0 1.00 1.29 1.66

Normal -1.65 -1.28 -0.99 0 0.99 1.28 1.65

Bootstrap-t -4.53 -2.01 -1.32 -.025 0.86 1.19 1.53

Confidence intervals based on 
bootstrap percentiles
• Percentiles of the bootstrap histogram 

define the confidence limits
• If the bootstrap distribution of      is roughly 

normal, then the standard normal and 
percentile intervals will nearly agree

• The percentile method automatically makes 
transformation if such transformation exists

θ̂

Bias corrected confidence 
intervals BCa
• Bootstrap intervals should match exact confidence 

intervals where statistical theory provides an exact 
answer

• These intervals should also give dependably good 
coverage properties in all situations

• Neither bootstrap-t method nor the percentile 
method meet both of the above criteria

• BCa, a version of the percentile method, corrects 
the problems with the other methods 

Regression models and the 
bootstrap
• The general regression model: 

• g is of known form and may depend on a 
fixed vector of covariates,    is a vector of 
unknown parameters and  are independently 
and identically distributed with some 
distribution F

β

niforgY iii ,...,2,1)( =+= εβ
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Regression and the bootstrap 
(cont)
• Denote distance measure 

we get least squares 
estimates

• :
• The residuals are obtained by 
• The first bootstrap approach is to bootstrap the 

residuals 
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Regression and the bootstrap 
(cont)
• Construct a bootstrap sample data set

• Sample     with replacement B times
• Calculate 

niforgy ii ,...,2,1,)ˆ( ** =+= εβ
*
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Regression and the bootstrap 
(cont)
• A second approach is to bootstrap zi=(yi,ci)

of the observations yi and covariates ci

• The bootstrap samples are then z*= (y*,c*)
• y* is used to obtain the estimate      just as 

before
• This method is less sensitive to modeling 

assumptions

*β̂

Regression example

• From Anthony Davison, 1999. Simulated 
data consisting of 13 observations

• Dependent variable continuous from 
relatively uniform distribution

• Covar compositional x1 + ……+ x4      100
so X almost collinear

≈
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Regression example
Why not just use least squares?

• Least squares estimates are very sensitive to 
violations of the modeling assumptions 

• If error distribution is not Gaussian, the bootstrap 
provides a method for computing standard errors  
or prediction intervals regardless of method of 
estimation 

• Other complications to the regression problem 
such as heteroscedasticity and nonlinearity in the 
model terms 

Hypothesis testing and the 
bootstrap – two sample 
• Ho: F=G
• Test statistic is denoted by                       

the difference in means(need not be an estimate of 
a parameter)

• Computation of bootstrap test stat
1. Draw B samples of size n+m with replacement
2. Evaluate t(·) on each sample,
3. Approx. ASLboot by  

yzxt −=)(

*** )( yzxt b −=

statistictheofvalueobervedthextt
BtxtLSA

obs

obs
b

boot
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Hypothesis testing and the 
bootstrap – one sample 
• A one sample version of the normal test 

could be used
• Assume normality under Ho, 

• ASL =                                   where    is the 
cumulative distribution function of the 
standard normal

)//()( * ntz σφ − φ
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Estimates of location and 
dispersion and the bootstrap
• First and second moments of known distributions 

allow for the calculation of population parameters
• The population mean is the natural location 

parameter
• Distributions without first moments, the median is 

a natural location parameter
• Bootstrapping is useful, not in point estimation, 

but in providing measures of dispersion and 
measures of accuracy

Estimates of location and 
dispersion (cont)
• For distributions whose moments are 

undefined(e.g. the Cauchy distribution), the 
sample mean does not converge to the 
population mean

• The median however, does converge 
• If nothing is known about the population, 

then estimating the median is probably the 
correct approach 

In  contrast to the jackknife

• Originally goal was to improve an estimate of bias
• Became more useful as a way to estimate 

variances and standard errors
• Focuses on the samples that leaves out one 

observation at a time
• Although predates the bootstrap, it bears strong 

resemblance to the bootstrap
• The bootstrap is generally considered to be more 

efficient

In contrast to permutation 
methods
• Based on order statistic representation, 

meaning that all possible permutations of 
the data vector are chosen and analyzed

• Samples are not drawn with replacement
• The bootstrap gives very similar results to 

the permutation test
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Example

• Adapted from Fox (1997) “Applied
Regression Analysis”

• Goal: Estimate mean difference between 
Male and Female finding X

• Four pairs of observations are available:

Tables of  values

341444

535403

-317142

618241

Differ. YFemaleMaleObserv.

Mean Difference
Sample mean is 2.75

• If Y were normally distributed, 95% CI

• But we do not know

n
Y σµ 96.1±=

σ

Estimates
• Estimate of     is 

• Estimate of standard error is 

• Assuming population is normally

distributed, we can use t-distribution               
as 

σ )1(
)( 2

−
−

= ∑
n

YY
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n
StY n 025.0,1−±=µ
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Confidence Intervals

Very Wide

41.1191.5 <<− µ

Bootstrap sample mean, 
variance and SE
• Use distribution Y* of sample to estimate 

distribution Y in population
• After sampling with replacement, B=1000, we get:

E*(Y*)=2.74
SE of the bootstrap replicates is 1.76

• This is smaller than the SE calculated from the 
sample

Results of bootstrapping
Observed     Bias Mean  SE

• Param     2.75 -0.01475 2.735    1.763
• Empirical Percentiles:

2.5%    5%    95%  97.5%
• Param -1.5 0 5.25  5.5
• BCa Percentiles:

2.5%       5%   95%  97.5%
• Param -2.205 -1.5   4.75     5

Normal qq-plot of replicated 
mean differences
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Distribution of bootstrap 
replicates
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