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Bootstrap defined

The bootstrap is a form of a larger class of methods that
resample from the original data set and therefore are called
resampling procedures

Some resampling procedures go back a long way (e.g. the
jackknife—1949, permutation methods—1930s)

Computer based method for assigning measures of accuracy to
statistical estimates(Efron, 1998)

Efron along with colleagues connected the nonparametric
bootstrap(resampling with replacement) with earlier accepted
statistical tools such as the jackknife and delta method for
estimating standard errors

Summary

» Will describe
- basic ideas
- confidence intervals

- application to hypothesis testing and
regression problems
- examples

Bootstrap process described

» B bootstrap samples are generated from the

original dataset

Each bootstrap sample has n elements, generated
by sampling with replacement » times
Bootstrap replicates s(x™1),s(x*2), , S(x™B) are
obtained by calculating the value of the estimator
of the replicate
The standard deviation of the values s(x*1),

, s(x™B) is the estimate of standard error of
s(x), sometimes called the Monte Carlo

approximation to the bootstrap estimate of the
standard error




Bootstrap process described(cont)

* We really would like to know the
distribution of s(x)— s(x)

+ What we have, however, is the Monte Carlo
approximation to the distribution of
s(x)" — s(x)

» With a sufficiently large n the two
distributions are expected to be nearly the
same

* That the distribution of s(x)* —sfx)behaves

almost like the distribution of sfx) - s(x)

The empirical distribution
(continued)

* Observe F — (x, x,,..., X,,), the empirical
distribution F is the discrete distribution that puts
probability 1/n on each value x,,
i=12, ..., n

» F assigns to a set A in the sample space of x its
empirical probability Prob{A} =#{x; € A}/n

» The probability is really the proportion of
occurrence of each value in the empirical
distribution

* Information is not lost going from the full data set
(sample space) to the reduced

The empirical distribution and
the plug-in principle
+ Statistical inference involves estimating

some aspect of a probability distribution F
A sensible way of estimating some aspect of
F, such as the mean, median or correlation,
is to use the corresponding aspect of F

This is called the plug-in principle

The bootstrap method is a direct application
of the plug-in principle

The Empirical distribution
(cont)

e It is true that the vector of observed
frequencies F = (/,./,,)is a sufficient
statistic for the distribution F = (f}, f,,...)

e All the information about F contained in X is
also contained in F

e The sufficiency theorem assumes that the
data have been generated by random
sampling from some distribution F

e This is not always true




The plug-in principle

Simple method of estimating parameters from
samples

The plug-in estimate of a parameter 6 = t(F) is
definedtobe 6 = (F)

The bootstrap is used to study the bias and
standard error of the plug-in estimate

The bootstrap produces biases and standard errors
in an automatic fashion

The plug-in principle is less good when there is
information about F other than that provided by
the sample x

The plug-in principle and the bootstrap can be
adapted to parametric families and regression
models

The bootstrap estimate of
standard error

Bootstrap methods for estimating standard
errors depend upon the bootstrap sample

Corresponding to a bootstrap data set x” is a
bootstrap replication of ¢ = s(x)

The bootstrap estimate the standard error of
a statistic is a plug-in estimate that uses the
empirical distribution function Fin place of
the unknown distribution F

Statistics and standard errors

Summary statistics are often the first outputs
of a data analysis

The bootstrap provides accuracy estimates
by using the plug-in principle

The bootstrap estimate of standard error
requires no theoretical calculations

It is available even if the estimator @ = s(x)
is mathematically complex

The bootstrap algorithm for
estimating standard errors

1. Select B independent bootstrap samples
x'1 x2,..., x", each consisting of n data
values drawn with replacement from x

Evaluate the bootstrap replication
corresponding to each bootstrap sample,

db)=sx? b=12,....,B




The bootstrap algorithm for
estimating SE(cont)

The number of bootstrap
replications B

* A small number of replications B = 25, is usually
informative according to Efron

3. Estimate the standard error by the sample
standard deviation of the B replications

) - Ao o * 50 replications is often enough to give good
N { E o [9 (b) -6 ()]‘ /(B— 1)} “s estimate of standard error
* Much bigger values of B are required for bootstrap

ANIIN B Ax
Where 6 (1) = bt 0 (b)/Bp=12,....B confidence intervals
+ 1000 replications is recommended by Harrell and
others for stable confidence intervals

The parametric bootstrap Estimation of b
imatio ias

Bootstrap resampling carried out parametrically

Standard error from this process will closely
resemble results derived from textbook formulae

Why conduct bootstrap process if theory and

Another measure of statistical accuracy is
bias

formulae have been developed?

Where is bootstrap process inferior to formula
application

Davison and Hinkley (1997) justify the
nonparametric bootstrap in parametric problems as
a test of robustness of validity of the parametric
method

Bias is the difference between the expected
value of an estimator and the quantity
being estimated

The bootstrap estimate of bias is:

bias, =E, [s(x")]=t(F),where t(F) is the

plug —in estimate of 6




Estimation of bias(cont) Confidence intervals

* If s(x) is the mean it can be shown that bias, =0 » Standard errors are often used to assign
approximate confidence intervals to a parameter of

 Estimates of bootstrap bias must be done with .
interest

Monte Carlo simulation with B . i
+ This parameter is assumed to be normally

replications of the form distributed with known standard error
bias , = é*(.) —t(F), where é*(.) = Zf:] s(x™)/B * The random quantity Z =(6—6)/se~ N(0,1)
valid for n — o0
but a limited approximation for finite samples

Confidence intervals based on
Confidence intervals the bootstrap-t interval

Obtain accurate intervals without having to make
» The standard confidence interval can be normal theory assumptions

improved upon using the t distribution for Estimate the distribution of Z directly from the

finite samples data

. . Can build a table of values for this process as you
* The use of the t distribution does not adjust can for the Normal and t distributions

for the skewness of the underlying . The bootstrap table is built by generating B
distribution or other errors that result when 4 bootstrap samples and computing the bootstrap
is not the sample mean version of Z for each X

Z'(b) = (6" (b)—0)/5e (b), where& (b) = s(x™")




Confidence intervals based on

Table of percentiles bootstrap percentiles

* Percentiles of the bootstrap histogram
define the confidence limits

If the bootstrap distribution of @ is roughly
normal, then the standard normal and
percentile intervals will nearly agree

The percentile method automatically makes
transformation if such transformation exists

Bias corrected confidence Regression models and the
intervals BC, bootstrap

* Bootstrap intervals should match exact confidence * The general regression model:

2::\1\1\;2115 where statistical theory provides an exact Y= g(f)+e fori=12,..n
These intervals should also give dependably good * g is of known form and may depend on a
coverage properties in all situations fixed vector of covariates, 5 is a vector of
Neither bootstrap-t method nor the percentile unknown parameters and are independently

method meet both of the above criteria . . .. .
.. . and identically distributed with some
BC,, a version of the percentile method, corrects e e e
; distribution F

the problems with the other methods




Regression and the bootstrap
(cont)

¢ Denote distance measure

Dy, A(B) =2, [y~ (B we get least squares
estimates

* f=min(D(y, A(B))
+ The residuals are obtained by £, = ¥, — g,(5)

 The first bootstrap approach is to bootstrap the
residuals &,

Regression and the bootstrap
(cont)

* A second approach is to bootstrap z,=(,c;)

of the observations y; and covariates c;

* The bootstrap samples are then z*= (3",c”)

* y"is used to obtain the estimate A just as
before

* This method is less sensitive to modeling
assumptions

Regression and the bootstrap
(cont)

» Construct a bootstrap sample data set
vy =g(B)+e, fori=12,..n

» Sample &; with replacement B times

» Calculate ﬂw =min(D(y, A(f))

Regression example

* From Anthony Davison, 1999. Simulated
data consisting of 13 observations

» Dependent variable continuous from
relatively uniform distribution

» Covar compositional x; +
so X almost collinear




Regression example

Why not just use least squares?

+ Least squares estimates are very sensitive to
violations of the modeling assumptions

If error distribution is not Gaussian, the bootstrap
provides a method for computing standard errors
or prediction intervals regardless of method of
estimation

Other complications to the regression problem
such as heteroscedasticity and nonlinearity in the
model terms

Hypothesis testing and the Hypothesis testing and the

bootstrap — two sample bootstrap — one sample
« H:F=G
« Test statistic is denoted by #(x )=z —y
the difference in means(need not be an estimate of
a parameter) i
« Computation of bootstrap test stat * ASL= ¢(z —)/(o/ Jn)  whered is the
) .. o cumulative distribution function of the
1. Draw B samples of size n+m with replacement
. standard normal

* A one sample version of the normal test
could be used

* Assume normality under H,,

2. Evaluate t(-) on each sample, #(x ") =2z — y
3. Approx. ASL, . by
ASL, =#{t(x") >t

t,. =t(x)the oberved value of the statistic

‘boot obs} /B ’

obs




Estimates of location and
dispersion and the bootstrap

First and second moments of known distributions
allow for the calculation of population parameters
The population mean is the natural location
parameter

Distributions without first moments, the median is
a natural location parameter

Bootstrapping is useful, not in point estimation,
but in providing measures of dispersion and
measures of accuracy

In contrast to the jackknife

Originally goal was to improve an estimate of bias
Became more useful as a way to estimate
variances and standard errors

Focuses on the samples that leaves out one
observation at a time

Although predates the bootstrap, it bears strong
resemblance to the bootstrap

The bootstrap is generally considered to be more
efficient

Estimates of location and
dispersion (cont)

* For distributions whose moments are
undefined(e.g. the Cauchy distribution), the
sample mean does not converge to the
population mean

The median however, does converge

If nothing is known about the population,
then estimating the median is probably the
correct approach

In contrast to permutation
methods

» Based on order statistic representation,
meaning that all possible permutations of
the data vector are chosen and analyzed
Samples are not drawn with replacement

The bootstrap gives very similar results to
the permutation test




Example

» Adapted from Fox (1997) “Applied
Regression Analysis”

» Goal: Estimate mean difference between
Male and Female finding X

* Four pairs of observations are available:

Mean Difference
Sample mean is 2.75

* [f Y were normally distributed, 95% CI

,u:I7i1.96i

Jn

* But we do not know o

Tables of values

I G L

Estimates
* Estimate of o is

« Estimate of standard error is SE(Y)= 2.015

S

n

* Assuming population is normally
distributed, we can use t-distribution

as 7 S
H=YH s
1,00 ')\/;I




Bootstrap sample mean,

Confidence Intervals variance and SE

» Use distribution Y* of sample to estimate
Very Wide distribution Y in ]'Jopulatlon
+ After sampling with replacement, B=1000, we get:
=591<u<1141 EX(Y*)=2.74
SE of the bootstrap replicates is 1.76

 This is smaller than the SE calculated from the
sample

Results of bootstrapping Normal qq-plot of replicated

Observed Bias Mean SE mean differences

Param 2.75-0.014752.735 1.763
Empirical Percentiles:

2.5% 5% 95% 97.5%
Param -1.5 0 525 55
BCa Percentiles:

2.5% 5% 95% 97.5%
Param -2.205 -1.5 475 5
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