Introduction to the Bootstrap

Methods Seminar VIII Charles Thomas clt6@po.cwru.edu

Summary

- Will describe
 - basic ideas
 - confidence intervals
 - application to hypothesis testing and
 - regression problems
 - examples

Bootstrap defined

- The bootstrap is a form of a larger class of methods that resample from the original data set and therefore are called resampling procedures
- Some resampling procedures go back a long way (e.g. the jackknife—1949, permutation methods—1930s)
- Computer based method for assigning measures of accuracy to statistical estimates(Efron, 1998)
- Efron along with colleagues connected the nonparametric bootstrap(resampling with replacement) with earlier accepted statistical tools such as the jackknife and delta method for estimating standard errors

Bootstrap process described

- B bootstrap samples are generated from the original dataset
- Each bootstrap sample has **n** elements, generated by sampling with replacement *n* times
- Bootstrap replicates s(x*1),s(x*2),, s(x*B) are obtained by calculating the value of the estimator of the replicate
- The standard deviation of the values s(x*1),s(x*2),, s(x*B) is the estimate of standard error of s(x), sometimes called the Monte Carlo approximation to the bootstrap estimate of the standard error

Bootstrap process described(cont)

- We really would like to know the distribution of $\hat{s}(x)$ $s(\mathbf{x})$
- What we have, however, is the Monte Carlo approximation to the distribution of $s(\mathbf{x})^* \hat{s(x)}$
- With a sufficiently large **n** the two distributions are expected to be nearly the same
- That the distribution of $s(\mathbf{x})^* \hat{s(x)}$ behaves almost like the distribution of $\hat{s(x)} - s(\mathbf{x})$

The empirical distribution and the plug-in principle

- Statistical inference involves estimating some aspect of a probability distribution **F**
- A sensible way of estimating some aspect of **F**, such as the mean, median or correlation, is to use the corresponding aspect of **F**
- This is called the plug-in principle
- The bootstrap method is a direct application of the plug-in principle

The empirical distribution (continued)

- Observe $\mathbf{F} \rightarrow (x_1, x_2, ..., x_n)$, the empirical distribution \mathbf{F} is the discrete distribution that puts probability 1/n on each value x_i ,
- *i* =1,2, ..., *n*.
- F assigns to a set A in the sample space of x its empirical probability **Prob**{A} = #{x_i ∈ A}/n
- The probability is really the proportion of occurrence of each value in the empirical distribution
- Information is not lost going from the full data set (sample space) to the reduced

The Empirical distribution (cont)

- It is true that the vector of observed frequencies $\hat{F} = (\hat{f}_1, \hat{f}_2,...)$ is a sufficient statistic for the distribution $\mathbf{F} = (f_1, f_2,...)$
- All the information about **F** contained in **x** is also contained in **F**
- The sufficiency theorem assumes that the data have been generated by random sampling from some distribution **F**
- This is not always true

The plug-in principle

- Simple method of estimating parameters from samples
- The plug-in estimate of a parameter $\theta = t(\mathbf{F})$ is defined to be $\hat{\theta} = t(\hat{F})$
- The bootstrap is used to study the bias and standard error of the plug-in estimate
- The bootstrap produces biases and standard errors in an automatic fashion
- The plug-in principle is less good when there is information about **F** other than that provided by the sample **x**
- The plug-in principle and the bootstrap can be adapted to parametric families and regression models

Statistics and standard errors

- Summary statistics are often the first outputs of a data analysis
- The bootstrap provides accuracy estimates by using the plug-in principle
- The bootstrap estimate of standard error requires no theoretical calculations
- It is available even if the estimator $\theta = s(\mathbf{x})$ is mathematically complex

The bootstrap estimate of standard error

- Bootstrap methods for estimating standard errors depend upon the bootstrap sample
- Corresponding to a bootstrap data set \mathbf{x}^* is a bootstrap replication of $\theta = \mathbf{s}(\mathbf{x}^*)$
- The bootstrap estimate the standard error of a statistic is a plug-in estimate that uses the empirical distribution function \hat{F} in place of the unknown distribution **F**

The bootstrap algorithm for estimating standard errors

- Select B independent bootstrap samples x^{*1} x^{*2},..., x^{*B}, each consisting of *n* data values drawn with replacement from x
- 2. Evaluate the bootstrap replication corresponding to each bootstrap sample, $\hat{\theta}(b) = s(\mathbf{x}^{*b})$ b = 1, 2, ..., B

The bootstrap algorithm for estimating SE(cont)

3. Estimate the standard error by the sample standard deviation of the *B* replications

$$\hat{s}e_{B} = \{\sum_{b=1}^{B} [\hat{\theta}^{*}(b) - \hat{\theta}^{*}(\cdot)]^{2} / (B-1)\}^{\frac{1}{2}},\$$

Where $\hat{\theta}^{*}(\cdot) = \sum_{b=1}^{B} \hat{\theta}^{*}(b) / B, b = 1, 2, ..., B$

The number of bootstrap replications *B*

- A small number of replications B = 25, is usually informative according to Efron
- 50 replications is often enough to give good estimate of standard error
- Much bigger values of *B* are required for bootstrap confidence intervals
- 1000 replications is recommended by Harrell and others for stable confidence intervals

The parametric bootstrap

- Bootstrap resampling carried out parametrically
- Standard error from this process will closely resemble results derived from textbook formulae
- Why conduct bootstrap process if theory and formulae have been developed?
- Where is bootstrap process inferior to formula application
- Davison and Hinkley (1997) justify the nonparametric bootstrap in parametric problems as a test of robustness of validity of the parametric method

Estimation of bias

- Another measure of statistical accuracy is bias
- Bias is the difference between the expected value of an estimator and the quantity being estimated
- The bootstrap estimate of bias is: $bias_{\hat{F}} = E_{\hat{F}}[s(x^*)] - t(\hat{F})$, where $t(\hat{F})$ is the plug - in estimate of θ

Estimation of bias(cont)

- If $s(\mathbf{x})$ is the mean it can be shown that $bias_{\hat{F}} = 0$
- Estimates of bootstrap bias must be done with Monte Carlo simulation with B replications of the form

bias_B = $\hat{\theta}^*(\cdot) - t(\hat{F})$, where $\hat{\theta}^*(\cdot) = \sum_{b=1}^{B} s(x^{*b}) / B$

Confidence intervals

- Standard errors are often used to assign approximate confidence intervals to a parameter of interest
- This parameter is assumed to be normally distributed with known standard error
- The random quantity $Z = (\hat{\theta} \theta) / \hat{s}e \sim N(0,1)$ valid for $n \rightarrow \infty$
 - but a limited approximation for finite samples

Confidence intervals

- The standard confidence interval can be improved upon using the t distribution for finite samples
- The use of the t distribution does not adjust for the skewness of the underlying distribution or other errors that result when $\hat{\theta}$ is not the sample mean

Confidence intervals based on the bootstrap-t interval

- Obtain accurate intervals without having to make normal theory assumptions
- Estimate the distribution of Z directly from the data
- Can build a table of values for this process as you can for the Normal and t distributions
- The bootstrap table is built by generating B bootstrap samples and computing the bootstrap version of Z for each

$$Z^*(b) = (\hat{\theta}^*(b) - \hat{\theta}) / \hat{s}e^*(b), \text{ where } \hat{\theta}^*(b) = s(x^{*b})$$

Percentile	5%	10%	16%	50%	84%	90%	95%
ţ,	-2.01	-1.48	-1.73	0	1.73	1.48	2.01
t _a	-1.86	-1.40	-1.10	0	1.10	1.40	1.86
t ₂₀	-1.73	-1.33	-1.06	0	1.06	1.33	1.73
t ₅₀	-1.68	-1.30	-1.02	0	1.02	1.30	1.68
t ₁₀₀	-1.66	-1.29	-1.00	0	1.00	1.29	1.66
Normal	-1.65	-1.28	-0.99	0	0.99	1.28	1.65
Bootstrap-t	-4.53	-2.01	-1.32	025	0.86	1.19	1.53

Table of percentiles

Confidence intervals based on bootstrap percentiles

- Percentiles of the bootstrap histogram define the confidence limits
- If the bootstrap distribution of $\hat{\theta}$ is roughly normal, then the standard normal and percentile intervals will nearly agree
- The percentile method automatically makes transformation if such transformation exists

Bias corrected confidence intervals BC_a

- Bootstrap intervals should match exact confidence intervals where statistical theory provides an exact answer
- These intervals should also give dependably good coverage properties in all situations
- Neither bootstrap-t method nor the percentile method meet both of the above criteria
- BC_a, a version of the percentile method, corrects the problems with the other methods

Regression models and the bootstrap

- The general regression model:
 - $Y_i = g_i(\beta) + \varepsilon_i \text{ for } i = \overline{1, 2, ..., n}$
- g is of known form and may depend on a fixed vector of covariates, β is a vector of unknown parameters and are independently and identically distributed with some distribution F

Regression and the bootstrap (cont)

- Denote distance measure $D(y, \lambda(\beta)) = \sum_{i=1}^{n} [y_i - g_i(\beta)]^2$ we get least squares estimates
- $\hat{\boldsymbol{\beta}} = \min(D(\boldsymbol{y}, \boldsymbol{\lambda}(\boldsymbol{\beta})))$
- The residuals are obtained by $\hat{\varepsilon}_i = y_i g_i(\beta)$
- The first bootstrap approach is to bootstrap the residuals \mathcal{E}_i

Regression and the bootstrap (cont)

- Construct a bootstrap sample data set
 - $y_i^* = g(\hat{\beta})_* + \varepsilon_i^*, \text{ for } i = 1, 2, ..., n$
- Sample \mathcal{E}_i^* with replacement B times
- Calculate $\hat{\beta}^* = \min(D(y, \lambda(\beta)))$

Regression and the bootstrap (cont)

- A second approach is to bootstrap $z_i = (y_p c_i)$ of the observations y_i and covariates c_i
- The bootstrap samples are then $z^* = (y^*, c^*)$
- y^* is used to obtain the estimate $\hat{\beta}^*$ just as before
- This method is less sensitive to modeling assumptions

Regression example

- From Anthony Davison, 1999. Simulated data consisting of 13 observations
- Dependent variable continuous from relatively uniform distribution
- Covar compositional x₁ + + x₄ ≈ 100 so X almost collinear

Why not just use least squares?

- Least squares estimates are very sensitive to violations of the modeling assumptions
- If error distribution is not Gaussian, the bootstrap provides a method for computing standard errors or prediction intervals regardless of method of estimation
- Other complications to the regression problem such as heteroscedasticity and nonlinearity in the model terms

Hypothesis testing and the bootstrap – two sample

- $H_0: F=G$
- Test statistic is denoted by $t(x) = \overline{z} \overline{y}$ the difference in means(need not be an estimate of a parameter)
- Computation of bootstrap test stat
 - 1. Draw B samples of size n+m with replacement
 - 2. Evaluate t(·) on each sample, $t(x^{*b}) = \overline{z}^* \overline{y}^*$
 - 3. Approx. ASL_{boot} by
 - $\hat{ASL}_{boot} = \#\{t(x^{*b}) \ge t_{obs}\} / B,$
 - $t_{obs} = t(x)$ the observed value of the statistic

Hypothesis testing and the bootstrap – one sample

- A one sample version of the normal test could be used
- Assume normality under H_{a}
- ASL = $\phi(\overline{z}^* t)/(\sigma/\sqrt{n})$ where ϕ is the cumulative distribution function of the standard normal

Estimates of location and dispersion and the bootstrap

- First and second moments of known distributions allow for the calculation of population parameters
- The population mean is the natural location parameter
- Distributions without first moments, the median is a natural location parameter
- Bootstrapping is useful, not in point estimation, but in providing measures of dispersion and measures of accuracy

Estimates of location and dispersion (cont)

- For distributions whose moments are undefined(e.g. the Cauchy distribution), the sample mean does not converge to the population mean
- The median however, does converge
- If nothing is known about the population, then estimating the median is probably the correct approach

In contrast to the jackknife

- Originally goal was to improve an estimate of bias
- Became more useful as a way to estimate variances and standard errors
- Focuses on the samples that leaves out one observation at a time
- Although predates the bootstrap, it bears strong resemblance to the bootstrap
- The bootstrap is generally considered to be more efficient

In contrast to permutation methods

- Based on order statistic representation, meaning that all possible permutations of the data vector are chosen and analyzed
- Samples are not drawn with replacement
- The bootstrap gives very similar results to the permutation test

Example

- Adapted from Fox (1997) "Applied Regression Analysis"
- Goal: Estimate mean difference between Male and Female finding X
- Four pairs of observations are available:

Tables of values

Observ.	Male	Female	Differ. Y
1	24	18	6
2	14	17	-3
3	40	35	5
4	44	41	3

Mean Difference

Sample mean is 2.75

• If Y were normally distributed, 95% CI

$$\mu = \overline{Y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

 \cdot But we do not know σ

Estimates

• Estimate of σ is

$$s = \sqrt{\frac{\sum (Y_j - \overline{Y})^2}{(n-1)}}$$

- Estimate of standard error is $S\hat{E}(\overline{Y}) = \frac{S}{\sqrt{n}} = 2.015$
- Assuming population is normally

distributed, we can use t-distribution

$$\mu = \overline{Y} \pm t_{n-1,0025} \frac{S}{\sqrt{n}}$$

as

Confidence Intervals

Very Wide

$$-5.91 < \mu < 11.41$$

Bootstrap sample mean, variance and SE

- Use distribution Y* of sample to estimate distribution Y in population
- After sampling with replacement, B=1000, we get: E*(Y*)=2.74

SE of the bootstrap replicates is 1.76

• This is smaller than the SE calculated from the sample

Results of bootstrapping

- Observed Bias Mean SE
- Param 2.75 -0.01475 2.735 1.763
- Empirical Percentiles:
 - 2.5% 5% 95% 97.5%
- Param -1.5 0 5.25 5.5
- BCa Percentiles:
 - 2.5% 5% 95% 97.5%
- Param -2.205 -1.5 4.75 5

Normal qq-plot of replicated mean differences

Distribution of bootstrap replicates

References

Chernick, M. (1999). Bootstrap Methods: A Practitioner's Guide. John Wiley & Sons, New York.
Efron, B, and Tibshirani, R. (1993). An Introduction to the Bootstrap.
Chapman & Hall, New York.
Manly B. (1997). Randomization, Bootstrap, and Monte Carlo Methods in Biology. Chapman & Hall, New York.
Efron, B. (1979a). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.
Efron, B. (1986). How biased is the apparent error rate of a prediction rule? J. Am. Statist. Assoc. 81, 461-470.
Efron, B. (1987). Better bootstrap confidence intervals. J. Am. Statist. Assoc. 82, 171-200.
Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard

statist. Sci. 1, 54-77.