Measuring Risk Attitude: Implications for Decision Analyses

\qquad

Mendel E. Singer, Ph.D.
Heather Beaird
Georgia L. Wiesner, MD
Lesley-Ann N. Miller, MS
Case Western Reserve University Funded by the American Cancer Society

Background

- Decision analyses typically assume risk neutrality, such that the distribution of outcomes is ignored in favor of comparing expected values.
- Example: These choices are valued the same - Choice A: 100% chance of life expect. $=10 \mathrm{yrs}$
- Choice B: 50% chance of life expect. $=20 \mathrm{yrs}$ 50% chance of immediate death
\qquad
\qquad
\qquad
\qquad
- This is consistent within the policy framework where the goal is to maximize health for the population, but may not reflect an individual's preferences.
\qquad
\qquad
\qquad

Paradox

- It is possible to have a strategy be optimal for a group, yet not be optimal for any individual.
- Example:
- Choice A: 100% chance of life expect. $=10 \mathrm{yrs}$
- Choice B: 51% chance of life expect. $=20 \mathrm{yrs}$ 49% chance of immediate death
- Do you take the drug?
- Expected values tell you "Yes".
- People may tell you otherwise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Distribution of Outcomes

- The distribution of outcomes may be important
- Example (Schrag D et al, JAMA, Feb 2, 2000):
- Women with BRCA-associated breast cancer
- 30 year old women, prophylactic strategies
- Moderate penetrance, node-negative
- Measure: Gain in life expectancy
- In response to a letter (Miller, L-AN and Singer ME), Schrag responded that only 2% of these women would die without prophylaxis. Thus, almost 98% would have no benefit in LE, while 2\% would experience major gains.

\qquad
\qquad
\qquad

0	Risk Aversion
- Do people approach some medical decisions	
like they do the purchase of insurance?	
- Do people adopt a strongly risk averse	
position when confronted with the	
possibility of an extremely adverse	
outcome?	
- If so, assumptions of risk neutrality will	
bias results against preventive measures.	

Concept

- People may have a utility function for outcomes. Whereas risk neutrality uses expected values, such that all outcomes are weighted equally, it may be that people assign additional weight to particularly bad outcomes. Similarly the variance and skewness of the distribution of outcomes may factor into the evaluation.

Methods

- A survey was conducted of 167 people in a jury waiting room in Cleveland, Ohio.
- Each person was presented with 5 standard gambles with varying degrees of risk.
- For each scenario, we varied the probability of losing the gamble until the patient valued the gamble the same as current health. This is the patient's point of indifference.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q
Risk Attitude and Discounting
0
:---
- Discount rate deals with relative value
along a continuous time spectrum.
- Risk attitude relates to the valuation of a
specific situation.
- For this study, we assume a 3\% discount
rate and attribute any variance in valuation
to risk attitude.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

呈	Sample Calculation of RAR - Scenario: Death in $t=2$ years - Interviewee point of indifference, $\mathrm{p}_{\mathrm{i}}=20 \%$. - "Expected" point of indifference: - EV (gamble) = EV (sure thing) - Separate Discounting from Risk Attitude $\bullet \mathrm{p}_{\mathrm{e}}=.734$, using a 3\% discount rate. - Risk Attitude Ratio, RAR = . $2 / .734=.27$

0		
0	Results - Stratified Regressions	
0	Outcome Variable $=$ Risk Attitude Ratio (RAR)	
Die in	Significant Variables	
0 yrs.	None	
0	1	Sex
0	3	Sex, Race, Previously Married
0		Sex, Race, Previously Married
0		

\qquad

0			
	Results - Hierarchical Model - Jury Data		
	Variable	Estimate	p-value
t	.129	$<.0001$	
t^{2}	-.021	$<.0001$	
Male	.092	$<.0001$	
African-American	-.085	$<.0001$	
Previously Married	.107	$<.0001$	
Income, Education, Single - Not Significant			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	Multivariate Models - JCC vs. Jury
0	- Both samples in both scenarios showed risk aversity. - For the Die Now standard gamble, there was a trend toward less risk aversity in the JCC sample (RAR . 07 higher, $\mathrm{p}=.057)$. - For the Die in 4 Years standard gamble, those in the JCC sample had significantly greater risk aversity (RAR . 124 lower, $\mathrm{p}=.012$).

0	Results - Difference in RAR
0	- Outcome variable $=$ difference in the RARs for the Die Now and Die in 4 years scenarios. - After adjusting for sociodemographic variables, we found that the difference in RARs for the JCC population was .19 less than for the general population $(\mathrm{p}<.0001)$.
0	

\qquad
\qquad

0	Conclusions (cont'd)
- RAR was useful in identifying a difference	
in risk attitude between a highly selected	
population and the general population.	
■ Decision analyses may be biased against	
primary or secondary prevention if people	
actually adopt the "insurance" mentality for	
these decisions and overvalue catastrophic	
events.	

